

VM Performance History

SEAS
7Oct1986

Lynn Wheeler
lynn@garlic.com

360/67

 750 ns memory
 Simplex - 256k-1024k
 Duplex – 512k-2048k
 Address Translation

 24bit
 32bit

CP/67 Release 1

 10 level dispatcher
 Based on cpu use
 High processor overhead

 No real storage throttle

CP/67 Release 2

 Two level dispatcher (Q1 & Q2)
 Essentially round-robin
 Every pass thru dispatcher look at all tasks multiple

times
 30-40 users, 10% cpu overhead

 Thrashing throttle based on fixed table
 Kernel storage management significant

 Upwards 1/3rd CP overhead

Work as undergraduate

 Fastpath
 Kernel SVC linkage reduced 185ms to 65ms
 Virtual SVC reflection 25ms eliminating dispatch
 Program interrupt handler
 Dispatcher

 BALR linkages
 Dynamic adaptive controls
 Local LRU & Working Set thrashing throttle
 Pagable kernel
 Custom I/O for CMS file i/o
 Ordered seek & chained requests

68 Share Presentation

 OS/360 MFT14
 Base 322secs elapsed time

 Base & Modified CP/67
 Reduced CP CPU from 533secs to 113secs

W/CP ratio CP CPU

original 855 2.2 533

changed 435 1.35 113

CP67 Release 3

 FastPath
 Fast redispatch
 Fast SVC reflect
 Fast instruction simulation restart

 Restructured Dispatcher
 Separate in-q chain

 Kernel storage subpool
 CMS Diagnose I/O

CP/67 Release 3.1

 Dynamic Adaptive Scheduler
 Working set page thrash
 Global LRU Replacement
 Limited avail. Support for V=R

CP67 Release 3.2

 Internal 3.1L
 Development group focused on vm370

 Ordered seek queuing
 PCI interrupts
 Chained requests

 Increased 2301 from 80/sec to 300/sec

VM370 Release 1

 Lots of Simplification
 No Fastpath, dynamic adaptive, etc

 Q1 always ahead of Q2
 Quanta limit only virtual CPU
 One case Q1 ran for 20mins

 Shared segments
 Local (not global) LRU
 Approx. round-robin

VM370 Release 2

 Some fastpath (release1 PLC9)
 VMA Hardware support
 CPU use based on both virtual and CP
 VM/VS1 handshaking

CSC/VM (release 2)

 Relocatable Shared Segments
 Paging Access Method
 CP67 Dynamic Adaptive
 CP67 working set & global LRU
 CP67 Fastpath
 Restructure page supervisor
 Page & Swaptable migration
 Q3
 Autolog

SHARE VM Scheduler White Paper

 VM370 is regression from the best of CP67
 Proposed

 Additional I/O measurements
 Resource targets include I/O
 Runlist limit include more than working set
 Group scheduling

VM370 Release 3

 VMA support for VM with shared segments
 DCSS subset of CSC/VM (but w/o PAM)
 AUTOLOG command

Resource Manager (VM370 3.4)

 CP67 Dynamic Adaptive
 CP67 working set and global lru
 CP67 fastpath
 Restructure page supervisor
 Page & swaptable migration
 Q3
 Reliability and cleanup of over 60 modules

VM370 Release 3.8 ECPS

 Enhanced VMA function
 Virtual timer support
 E6 opcodes

 Kernel code moved to microcode for 10:1
improvement

 Top 6k bytes of code, approx.80% of CP cpu

VM370 Release 4 SMP

 Dependent on lots of code in resource manager
 Resource manager was 1st priced SCP
 Free SMP code couldn't require priced code
 Moved possibly 80% of code into free base w/o

changing RM price

SJR/VM Release 5

 Block Pre-paging (track previous pages)
 SYSPAG
 Single chain for eligible list
 Simple group scheduling
 Restructure IOS for performance & availability
 CMS chained terminal I/O
 Restructure CMS sysgen

 Multiple file directories in shared segments

SJR/VM Release 5.12

 Extensive timing measurements
 Runnable & non-runnable measured
 Restructured Q3 controls
 IOBLOK queued and service times
 PAGE I/O queued and service times

VM370 Release 6 (SEPP)

 CMS EDF
 Additional ECPS support for CMS
 S&Y directories in shared segment
 Uniprocessor V=R support

PAM CDF & EDF

 Typical application do some file operation
 4k/EDF I/Os for physical I/Os, PAM I/O are no. 4k

page transfers

CPU I/O elapsed

4k/EDF 3.72 1958 82

PAM/EDF 3.41 3836 56

PAM/CDF 3.02 3790 52

VM/SP-HPO Release 1

 CP does block 3270 for multiple simulated line
 SMP reworked for single, non-SMP guest
 Support for hardware “protect”
 Significant increase in CP overhead masked by

other changes

CP67-3.2 v. HPO2.5

machine 360/67 3081 ratio

MIPS 40-50

pages 105 7000 66

users 80 320 4

channels 6 24 4

drums 12m 72m *6

Page i/o 150 600 4

User i/o 100 300 3

Total data 1.2g 20.1g 18

VM/SP-HPO Release 3.x

 Cache sensitive kernel storage for SMP
 “true” runlist
 300 mills. Queue drop delay
 Big pages
 SYSPAG

Later VM/HPO

 Global LRU
 Numerous fixes for “enhancements” from 2.5-

3.4 period

VM Migration Aid

 Originally internal use only for MVS/XA
development
 Originally VM370 killed and all people moved to

support MVS/XA
 Endicott managed to save VM370 product mission

but had to recreate group from scratch

Cluster z/VM

 Minor mention from Hillgang 2009 presentation
 From the Annals of Release No Software

Before Its Time
 Internal US HONE datacenters (world-wide

sales & marketing support) consolidated in
silicon valley in mid-70s.

 Implemented load-balancing and fall-over
across large loosely-coupled cluster with large
shared disk farm.

VM Performance History

SEAS
7Oct1986

Lynn Wheeler
lynn@garlic.com

360/67

 750 ns memory
 Simplex - 256k-1024k
 Duplex – 512k-2048k
 Address Translation

 24bit
 32bit

Cambridge has been working on virtual operating
system (cp40) using custom modified 360/40 before
360/67 became available.

CP/67 Release 1

 10 level dispatcher
 Based on cpu use
 High processor overhead

 No real storage throttle

The first release of CP/67 still bore quite a bit of a
CTSS flavor from the stand-point of performance and
scheduling. There were no page thrashing controls
(CTSS had been a roll-in/roll-out swapping system).
The allocation of resources in some cases could
consume more resources than the resulting resources
allocated.

CP/67 Release 2

 Two level dispatcher (Q1 & Q2)
 Essentially round-robin
 Every pass thru dispatcher look at all tasks multiple

times
 30-40 users, 10% cpu overhead

 Thrashing throttle based on fixed table
 Kernel storage management significant

 Upwards 1/3rd CP overhead

The next release of CP/67 had a drastically simplified dispatcher
(from ten levels to two), and included an eligible queue for limiting
page thrashing, done by Lincoln Labs. The page thrashing controls
consisted of limiting the number of in-queue Q1 and Q2 virtual
machines to absolute numbers. The numbers where set based on
the number of available 256k real storage boxes. The selected
values were established by Lincoln Labs. based on the execution
characteristics of their local users
The dispatching and scheduling controls were still very simple and
straight forward. CPU overhead still tended to grow non-linear
(events*users). There were no specialized data structures and/or
implicit assumptions about possible state changes. Every time the
dispatcher was entered, it would check all logged on virtual
machines for state changes (exp: check for reflecting virtual I/O
interrupts). The chain of UTABLEs was then scanned a second
time, searching for any stacked CPEXBLOKs. Finally, the UTABLE
chain was scanned a third time to find the virtual machine with the
best dispatching priority.

Work as undergraduate

 Fastpath
 Kernel SVC linkage reduced 185ms to 65ms
 Virtual SVC reflection 25ms eliminating dispatch
 Program interrupt handler
 Dispatcher

 BALR linkages
 Dynamic adaptive controls
 Local LRU & Working Set thrashing throttle
 Pagable kernel
 Custom I/O for CMS file i/o
 Ordered seek & chained requests

Over the two years that I worked on CP/67 at WSU, I designed and
implemented numerous modifications to CP and CMS, many in the
area of performance (I was also very active in several other areas, in
editors, I modified the standard CMS editor to drive a 2250-3 for full-
screen support. I also rewrote the editor to be completely re-entrant
and imbedding it in HASP for CRJE support. I wrote the original
ASCII terminal support for CP and someplace I am credited with
being part of the team that developed the first OEM control unit for
IBM 360s
In the performance arena, I worked on several areas, a) generalized
path length reduction, b) fastpath - specialized paths for most
frequently encountered cases, c) control data structures that would
minimize CPU overhead, d) identifying closed CP/67 subroutines
and modifying them to use pre-allocated savearea in page 0, and
changing their callers to use BALR rather than SVC, e) improving the
page replacement algorithm to use reference bits, f) implementing
feedback/feedfoward controls in decision making. The dispatcher
changes implemented code that implicitly took advantage of which
possible virtual machines might require status updates.
CPEXBLOKs were also placed on a master chain instead of being
chained off the UTABLE. Finally an explicit in-q chain was created

68 Share Presentation

 OS/360 MFT14
 Base 322secs elapsed time

 Base & Modified CP/67
 Reduced CP CPU from 533secs to 113secs

W/CP ratio CP CPU

original 855 2.2 533

changed 435 1.35 113

Bare Machine times were 322 seconds elapsed (12.9
sec/job). Time to run just JCL for jobs, 292 seconds
(11.7 sec/job). Same run in unmodified CP/67 took 855
seconds to run (34.2 sec/job), with no other workload.
Time to make just JCL run was 787 seconds (31.6
sec/job). An attempt was also made to show that the
stand-alone to CP/67 runtime ratios were dependent
upon the percentage of privileged instructions
executed, with the O/S job scheduler having a
particular high percentage.

CP67 Release 3

 FastPath
 Fast redispatch
 Fast SVC reflect
 Fast instruction simulation restart

 Restructured Dispatcher
 Separate in-q chain

 Kernel storage subpool
 CMS Diagnose I/O

Release 3 of CP/67 had several significant performance
improvements, primarily involving the reduction of CPU
overhead. Several people at Cambridge were responsible for
this effort. Some of the items were direct copies of activity
that I did prior to joining IBM. CMS diagnose I/O was a direct
descendent of CMS stylized I/O, but a completely different
implementation.
FREE subpool support was a completely different approach
to free storage management. The traditional pathlength
optimization had just about been carried as far as it could go
in optimizing the existing implementation. The subpool
design recognized that the majority of the CP FREE storage
requests were of a specific nature. The subpool logic created
a specialized data structure and software support that were
specifically tailored to those types of requests (i.e. another
flavor of fastpath). This change reduced the FREE storage
CPU management overhead by better than a factor of 10
(which had been running better than 20 percent).

CP/67 Release 3.1

 Dynamic Adaptive Scheduler
 Working set page thrash
 Global LRU Replacement
 Limited avail. Support for V=R

While release 3.0 mostly implemented changes that
directly reduced CPU overhead, release 3.1
implemented more complex algorithm changes (some
of which also had the side-effect of reducing CPU
overhead), attempting to dynamically adapt the system
operation to both a large variety of different
configurations as well as load variability either in time
(i.e in the same installation at different times of the
day) or space (i.e. at different installations).

CP67 Release 3.2

 Internal 3.1L
 Development group focused on vm370

 Ordered seek queuing
 PCI interrupts
 Chained requests

 Increased 2301 from 80/sec to 300/sec

The development group had split from the science
center and were concentrating on VM370. CSC
continued on a CP/67 base. With the pre-occupation
with vm370, it was decided to package some amount
of the CSC work for 3.2

VM370 Release 1

 Lots of Simplification
 No Fastpath, dynamic adaptive, etc

 Q1 always ahead of Q2
 Quanta limit only virtual CPU
 One case Q1 ran for 20mins

 Shared segments
 Local (not global) LRU
 Approx. round-robin

CP67 morph into VM370 cleaned up, reorganized and
simplified much of the code. CMS reorganized to use
370 64kbyte shared segments and 370 hardware
segment protect. Hardware segment protect was
dropped as part of 165 hardware schedule problem
and the crude storage protect key hack had to be
substituted.

VM370 Release 2

 Some fastpath (release1 PLC9)
 VMA Hardware support
 CPU use based on both virtual and CP
 VM/VS1 handshaking

I contributed some fastpath changes for PLC9.

CSC/VM (release 2)

 Relocatable Shared Segments
 Paging Access Method
 CP67 Dynamic Adaptive
 CP67 working set & global LRU
 CP67 Fastpath
 Restructure page supervisor
 Page & Swaptable migration
 Q3
 Autolog

.CSC finally got around to replacing their 360/67 with a
two megabyte 155. As part of the conversion, I
upgraded much of the CP/67 work to VM/370
(although some stuff got dropped, for instance self-
stealing and some other page replacement algorithm
bells and whistles). Also, during the conversion period
there were a number of enhancements added
I created the AUTOLOG command as a part of a set of
procedures for automated, unattended benchmarking.
Some number of workloads were extreme stress that
required lot of vm370 cleanup. Final set for release of
resource manager involved 2000 benchmarks that took
3months elapsed time.

SHARE VM Scheduler White Paper

 VM370 is regression from the best of CP67
 Proposed

 Additional I/O measurements
 Resource targets include I/O
 Runlist limit include more than working set
 Group scheduling

VM370 Release 3

 VMA support for VM with shared segments
 DCSS subset of CSC/VM (but w/o PAM)
 AUTOLOG command

VMA for shared CMS was justified on checking 16
shared pages on every task switch being less than
benefit gained from VMA. However before release 3
shipped, subset of the CSC/VM CMS changes,
doubled the number of shared pages (and shared
page checking overhead).

Resource Manager (VM370 3.4)

 CP67 Dynamic Adaptive
 CP67 working set and global lru
 CP67 fastpath
 Restructure page supervisor
 Page & swaptable migration
 Q3
 Reliability and cleanup of over 60 modules

The Resource Manager was announced for release on
May 11, 1976. The changes for the PRPQ were
extracted from the IBM internally distributed CSC/VM.
The announcement letter lists the following highlights:
1) Scheduling Algorithm, 2) Page Migration, 3)
Swaptable Migration, 4) Reset pages and time stamp
segments, 5) working set estimate, 6) fast redisptach
extension, 7) enable window, 8) set favored extension,
9) indicate command extension, and 10) selective path
length reductions.
There were final 2000 benchmarks that took 3months
elapsed time for RM release.
Resource Manager was selected to be guinea pig for
charging for kernel software

VM370 Release 3.8 ECPS

 Enhanced VMA function
 Virtual timer support
 E6 opcodes

 Kernel code moved to microcode for 10:1
improvement

 Top 6k bytes of code, approx.80% of CP cpu

I had started work in Jan of 1975 on a project involving
an experimental (5-way SMP) machine and the
placement of significant portions of the CP supervisor
into the microcode in an architected way. In May,
several people from the Endicott visited CSC to
discuss moving subset of CP kernel code directly into
microcode

VM370 Release 4 SMP

 Dependent on lots of code in resource manager
 Resource manager was 1st priced SCP
 Free SMP code couldn't require priced code
 Moved possibly 80% of code into free base w/o

changing RM price

SMP design was dependent on a large amount of code
released in RM. Policies was hardware support was
(still) free and free code couldn't have dependency on
charged for code
Basic design was from earlier 5-way SMP work but
with nothing in microcode, but some of the software
was restructured to be similar

SJR/VM Release 5

 Block Pre-paging (track previous pages)
 SYSPAG
 Single chain for eligible list
 Simple group scheduling
 Restructure IOS for performance & availability
 CMS chained terminal I/O
 Restructure CMS sysgen

 Multiple file directories in shared segments

Much of the IOS reworked had been done for use by
disk engineering & product test labs (bullet proof and
never fail). They had previously tested MVS and found
it to have 15min MTBF.

SJR/VM Release 5.12

 Extensive timing measurements
 Runnable & non-runnable measured
 Restructured Q3 controls
 IOBLOK queued and service times
 PAGE I/O queued and service times

Lots of things were being time-stamped and then
various service & queued times accumulated for
resource policy decisions. Also time-stamping was
used in the IOS rewrite to implement MIH.

VM370 Release 6 (SEPP)

 CMS EDF
 Additional ECPS support for CMS
 S&Y directories in shared segment
 Uniprocessor V=R support

CMS enhanced filesystem supported minidisks
formated for 1k, 2k, and 4k record sizes.

PAM CDF & EDF

 Typical application do some file operation
 4k/EDF I/Os for physical I/Os, PAM I/O are no. 4k

page transfers

CPU I/O elapsed

4k/EDF 3.72 1958 82

PAM/EDF 3.41 3836 56

PAM/CDF 3.02 3790 52

Original CDF was 800 byte disk records. PAM/CDF
reworked CDF for 4k page records. PAM/EDF modified
4k/EDF operation. There were also infrastructure
changes to do contiguous allocation, delayed (block)
writes and increased number of read records.
Since operations were already page aligned and page
operations, it eliminated enormous amount of I/O
simulation overhead. CP could also re-organize
operation sequence and chain multiple requests for
operation service (as workload increased, benefits
multiplied)

VM/SP-HPO Release 1

 CP does block 3270 for multiple simulated line
 SMP reworked for single, non-SMP guest
 Support for hardware “protect”
 Significant increase in CP overhead masked by

other changes

Major customer opportunity was TPF on 3081.
Originally 3081 was to only come in multiprocessor
version and TPF didn't have multiprocessor support.
VM/SMP support was reworked to increase the
concurrent processing in a dedicated TPF environment
(increased overhead but allowed more of CP overhead
to execute concurrently with TPF).
3270 fullscreen write improvement somewhat masked
this change ... however most CMS intensive SMP
customers found overall throughput declined and
TTY/non-3270 intensive customers found significant
performance decline (my SJR/VM 5 CMS line writes
accomplished pretty much the same, but for all
customers).

CP67-3.2 v. HPO2.5

machine 360/67 3081 ratio

MIPS 40-50

pages 105 7000 66

users 80 320 4

channels 6 24 4

drums 12m 72m *6

Page i/o 150 600 4

User i/o 100 300 3

Total data 1.2g 20.1g 18

VM/SP-HPO Release 3.x

 Cache sensitive kernel storage for SMP
 “true” runlist
 300 mills. Queue drop delay
 Big pages
 SYSPAG

SYSPAG came from SJR/VM enhancing how the disk page
& spool area definitions are handled (previously they had
been strictly based on device)
300 mills delay was tdegrading performance.
There was a specific problem that I had done in CSC/VM &
SJR/VM that was in CP67 and I called VMDVBSY (which
defined “long-wait” based on real device type). VM370
change resulted in “long-wait” being based on virtual device
type. This was fine was long was they were similar. However,
there was mismatch between virtual 3215 and real 3270. For
every 3270 “enter” there would be three queue add/drops
(when there should only be one)
HPO changes involved lots of twiddling that lacked extensive
testing.
One was a change in HPO2.5 that would fail to reload
floating point registers under certain circumstances
(VM20536, HPO 2.5, 3.0, 3.2, & 3.4).
Other HPO problem allowed user runaway (like VM370
Release 1)

Later VM/HPO

 Global LRU
 Numerous fixes for “enhancements” from 2.5-

3.4 period

HPO2.5 corrupted global page replacement and taken
out in HPO3.4. They had been claiming 80% of the
code going into 3.4 was SYSPAG by Lynn Wheeler ...
then I was told there were six OIAs for 3.4 code. I was
then working with group putting global LRU back in
(and correcting several other enhancements from the
2.5-3.4 period) showing better performance.
http://www.garlic.com/~lynn/2011c.html#email860111
http://www.garlic.com/~lynn/2011c.html#email860119
http://www.garlic.com/~lynn/2011c.html#email860501
and later reference
http://www.garlic.com/~lynn/2011e.html#email870320

VM Migration Aid

 Originally internal use only for MVS/XA
development
 Originally VM370 killed and all people moved to

support MVS/XA
 Endicott managed to save VM370 product mission

but had to recreate group from scratch

Part of FS demise and mad rush to get items back into product
pipeline, POK managed to convince corporate to kill vm370,
shutdown development group and move all the people to POK to
support MVS/XA development. Part of that was (internal only) 370/xa
virtual machine test & development tool. 3081 SIE instruction was
created for virtual machine tested, but it had severe performance
issues since it had to be "paged" on the 3081
Eventually there was decision to release the internal tool as a
"migration aid" (from MVS to MVS/XA) ... old email about enormous
resources to cleanup the code for release. It had about 60% the
performance of VM/HPO on the same platform.
Internally, one person in Rochester modified VM/HPO3.2 to support
370/xa and SIE instruction. The migration aid organization
management contacted Rochester management to shut the person
down and obliterate all evidence
http://www.garlic.com/~lynn/2011c.html#email860121
http://www.garlic.com/~lynn/2011c.html#email861014
The Migration aid was improved to have 80% the performance of
VM/HPO

Cluster z/VM

 Minor mention from Hillgang 2009 presentation
 From the Annals of Release No Software

Before Its Time
 Internal US HONE datacenters (world-wide

sales & marketing support) consolidated in
silicon valley in mid-70s.

 Implemented load-balancing and fall-over
across large loosely-coupled cluster with large
shared disk farm.

